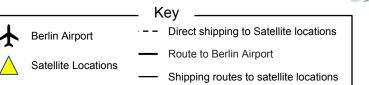
Optimization of Ammunition Distribution for Military Training

OIDD 612 Final Project: Group 5

Geoff Kalan

Gobind Johar

John Melville

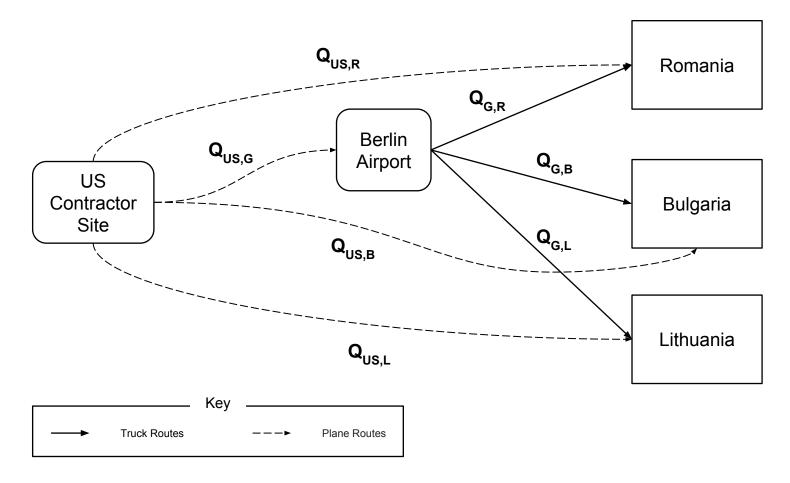

Meera Satiani

Natasha Kanchan

Piyush Keshri

Decision Making Problem and Context

- In 2015, the 2nd Cavalry Regiment's 3 companies were deployed from Vilseck, Germany across three countries in Eastern Europe
 - Company 1: Bulgaria
 - Company 2: Lithuania
 - Company 3: Romania
- Live ammunition is required for training and each location must have a minimum ammunition stockpile
- Ammunition can be shipped to the satellite locations in two ways:
 - 1) **Central Regional Hub**: Ammunition can be shipped in bulk by a contractor to a central regional hub, the Berlin Airport in Germany
 - Direct to Satellite Bases: When unit commands are able to accurately predict demand, ammunition can be shipped straight to satellite locations



KNOWLEDGE FOR ACTION

Graphical Illustration of Problem/Model

Data Required and Sources

Data Required

Demand:

- Ammunition demand for each of the 3 satellite locations
- o Initial inventory at each location

Storage Costs:

- o At Berlin Airport
- At each satellite location

Shipping capacity and costs:

- From contractors to Berlin Airport (airplanes)
- From contractors directly to satellite locations (airplanes)
- From Berlin Airport to satellite locations (shipping trucks)

Capacity constraints at each location

Potential Sources

- Historical demand at each site
- Contractor annual reports
- Primary interviews with key stakeholders
- Open Source Websites:
 - o Data.gov
 - o fbo.gov
 - o dacis.com

Modeling Approaches and Techniques

- Linear program to model basic linear objective function optimization
 - Use solver in excel and Simplex LP
- Use Monte Carlo simulation to generate average demand over a normal distribution
 - Each site's demand can be written as N(expected demand, expected variance)
 - Monte Carlo can be used to run trials and generate probabilistic demand distributions
- Extend problem to a **multi-period** scenario
 - Use inventory to link each period's demand constraint
 - Use initial inventories to approximate real world situations
- **Model nuanced phenomena** such as urgency, contractor supply and quality, and bulk purchasing through modifying costs for each remote site

Simplified Illustration of Model

Decision Variables ('000s)

- $Q_{US,G}$ = Quantity shipped from the US to Berlin
- $\mathbf{Q}_{\mathrm{US,R}}$ = Quantity shipped from the US to Romania
- $\mathbf{Q}_{_{\text{US},\text{B}}}$ = Quantity shipped from the US to Bulgaria
- $Q_{US,L}$ = Quantity shipped from the US to Lithuania
- $Q_{G.R}$ = Quantity trucked from Berlin to Romania
- $Q_{G,B}$ = Quantity trucked from Berlin to Bulgaria
- $Q_{G,L}$ = Quantity trucked from Berlin to Lithuania, and...
 - = For each of the 7 routes, binary variable to denote whether a route is used

Assumptions / Inputs ('000s)

 $FT_{i,j}$ = Fixed transportation cost for the route from i to j

 $VT_{i,i}$ = Variable transportation cost for the route from i to

- FS_i = Fixed storage at location i
- VS_i = Variable storage cost at location i
- D_i = Demand at location i
- I_i = Starting inventory at location i
- $C_{i,i}$ = Plane / truck capacity for the route from i to j
- $S_i = Storage$ capacity at location i

Constraints

Y

- **Demand**: $Q_{US,G} + I_G \ge Q_{G,R} + Q_{G,B} + Q_{G,L}$ and $Q_{US,i} + Q_{G,i} + I_i \ge D_i$ (for i = R, B and L)
- Shipping: $Q_{i,j} \leq C_{i,j}$ for each of the 7 routes
- Storage Capacity: $Q_{US,i} + I_i \le S_i$
- **Non-Negativity**: $Q_{i,i} \ge 0$ for each of the 7 routes

Objective Function (\$ '000s)

Minimize Total Cost = Transportation + Storage Cost

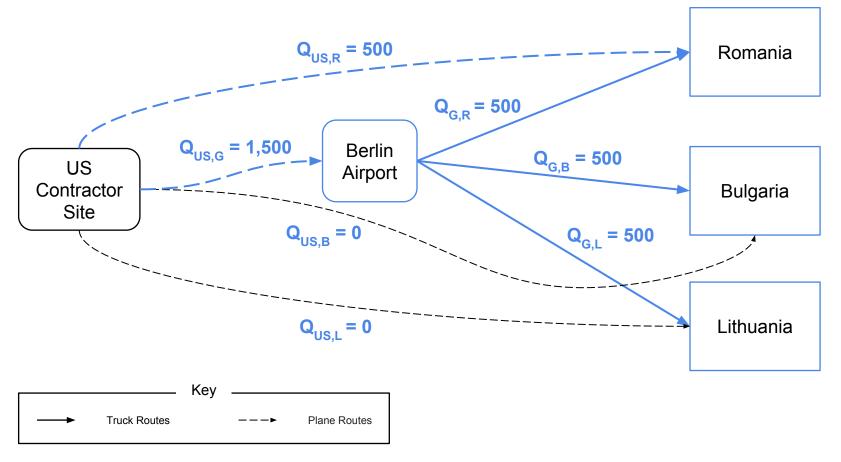
Transportation Cost: $\sum (FT_{i,i} \times Y_{i,i} + VT_{i,i} \times Q_{i,i})$ for each of the 7 routes

Storage Cost: $\sum [FS_i x Y_{US_i} + VS_i x (Q_{US_i} + I_i)]$ for each of the 4 storage locations, i.e. i = G, R, B and L

Simplified Illustration of Model (cont'd)

Route	Transportation Costs								
	Туре	Max Capacity	Fixed Cost	Unit Variable Cost	Route used	Quantity shipped	Total Cost		
U.S. to Berlin	Plane	1,500	500	20	1	1,500	\$30,500		
U.S. to Romania	Plane	1,000	250	20	1	500	\$10,250		
U.S. to Bulgaria	Plane	1,000	250	20	0	0	\$0		
U.S. to Lithuania	Plane	1,000	250	20	0	0	\$0		
Berlin to Romania	Truck	1,000	200	40	1	500	\$20,200		
Berlin to Bulgaria	Truck	1,000	200	30	1	500	\$15,200		
Berlin to Lithuania	Truck	1,000	200	20	1	500	\$10,200		
							\$86,350		

Simplified Illustration of Model (cont'd)


			Storage Costs					
Location	Demand	Initial Inventory	Max Capacity	Fixed Cost	Unit Variable Cost	Total Storage Cost		
Berlin	0	0	5,000	250	50	\$75,250		
Romania	1,000	0	2,000	200	100	\$50,200		
Bulgaria	500	0	1,000	100	100	\$0		
Lithuania	500	0	1,000	100	100	\$0		
						\$125,450		

Objective Function					
Transportation Cost	\$86,350				
Storage Cost	\$125,450				
Overall Cost	\$211,800				

Simplified Illustration of Model - Optimal Solution

in '1000s

KNOWLEDGE FOR ACTION

Thank You

					Transportation	Costs			
	Route		Туре	Max Capacity	Fixed Cost	Unit Variable Cost	Route used	Quantity shipped	Total Cost
1	U.S. to Berlin		Plane	1,500	500	20	1	1,500	\$30,500
2	U.S. to Roman	ia	Plane	1,000	250	20	1	500	\$10,250
3	U.S. to Bulgari	а	Plane	1,000	250	20	0	0	\$0
4	U.S. to Lithuar	nia	Plane	1,000	250	20	0	0	\$
5	Berlin to Roma	ania	Truck	1,000	200	40	1	500	\$20,200
6	Berlin to Bulga	ria	Truck	1,000	200	30	1	500	\$15,200
7	Berlin to Lithua	ania	Truck	1,000	200	20	1	500	\$10,20
									\$86,35
					Storage Costs				
	Location	Demand	Initial Inventory	Max Capacity	Fixed Cost	Unit Variable Cost	Total Storage	Cost	
1	Berlin	0	0	5,000	250	50	\$75,250		
2	Romania	1,000	0	2,000	200	100	\$50,200		
3	Bulgaria	500	0	1,000	100	100	\$0		
4	Lithuania	500	0	1,000	100	100	\$0	3 <u>.</u>	
							\$125,450		
	Objective Fund	ction							
	Transportation	Cost	\$86,350						
	Storage Cost		\$125,450						
- 80	Overall Cost		\$211,800						

Appendix 1 (continued)

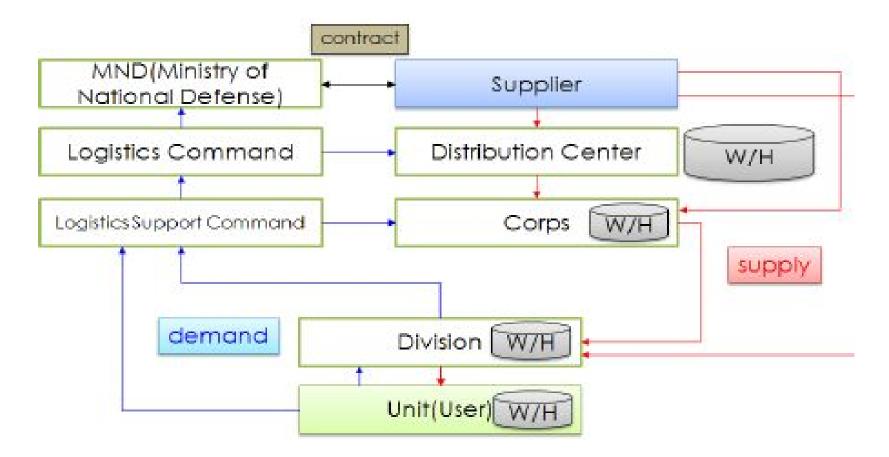
1. Shipping (Constraint						
Route		Quantity shipped		Max. Capacity			
U.S. to Berlin		1,500	<=	1,500			
U.S. to Roma	nia	500	<=	1,000			
U.S. to Bulga	ria	0	<=	0			
U.S. to Lithua	nia	0	<=	0			
Berlin to Rom	ania	500	<=	1,000			
Berlin to Bulg	aria	500	<=	1,000			
Berlin to Lithu	ania	500	<=	1,000			
2. Max Stora	ge Capacity						
Warehouse	Initial Inventory		Quantity needing Storage		Max. Capacity	_	
Berlin	0	1,500	1,500	<=	5,000		
Romania	0	500	500	<=	2,000		
Bulgaria	0	0	0	<=	0		
Lithuania	0	0	0	<=	0		
3. Demand C	onstraint						
Location	Initial Inventory		Quantity shipped thru Trucks	Total Units avai	lable	Demand	
Berlin	0	1,500	0	1,500	>=	1,500	(demand at Berlin is amount shipped on trucks)
Romania	0	500	500	1,000	>=	1,000	
Bulgaria	0	0	500	500	>=	500	
Lithuania	0	0	500	500	>=	500	

Objective Cell (Min)

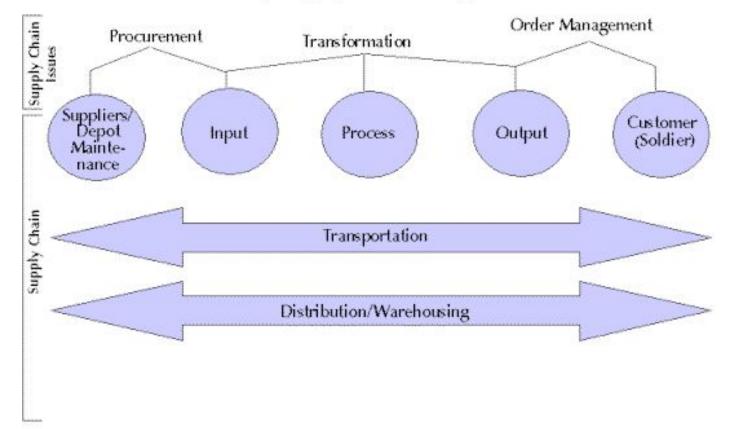
Cell	Name	Original Value	Final Value
\$D\$27	Overall Cost Initial Inventory	<mark>\$1,800</mark>	\$211,800

Variable Cells

Cell	Name	Original Value	Final Value Integer
\$H\$7	Plane Route used	- 1	1 Binary
\$H\$8	Plane Route used	1	1 Binary
\$H\$9	Plane Route used	0	0 Binary
\$H\$10	Plane Route used	0	0 Binary
\$H\$11	Truck Route used	1	1 Binary
\$H\$12	Truck Route used	1	1 Binary
\$H\$13	Truck Route used	1	1 Binary
\$1\$7	Plane Quantity shipped	0	1,500 Contin
\$1\$8	Plane Quantity shipped	0	500 Contin
\$1\$9	Plane Quantity shipped	0	0 Contin
\$1\$10	Plane Quantity shipped	0	0 Contin
\$1\$11	Truck Quantity shipped	0	500 Contin
\$ \$12	Truck Quantity shipped	0	500 Contin
\$1\$13	Truck Quantity shipped	0	500 Contin



Appendix 2 (continued)


Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$D\$34	U.S. to Berlin Quantity shipped	1,500	\$D\$34<=\$F\$34	Binding	0
\$D\$35	U.S. to Romania Quantity shipped	500	\$D\$35<=\$F\$35	Not Binding	500
\$D\$36	U.S. to Bulgaria Quantity shipped	0	\$D\$36<=\$F\$36	Binding	0
\$D\$37	U.S. to Lithuania Quantity shipped	0	\$D\$37<=\$F\$37	Binding	0
\$D\$38	Berlin to Romania Quantity shipped	500	\$D\$38<=\$F\$38	Not Binding	500
\$D\$39	Berlin to Bulgaria Quantity shipped	500	\$D\$39<=\$F\$39	Not Binding	500
\$D\$40	Berlin to Lithuania Quantity shipped	500	\$D\$40<=\$F\$40	Not Binding	500
\$E\$45	Berlin Quantity needing Storage	1,500	\$E\$45<=\$G\$45	Not Binding	3500
\$E\$46	Romania Quantity needing Storage	500	\$E\$46<=\$G\$46	Not Binding	1500
\$E\$47	Bulgaria Quantity needing Storage	0	\$E\$47<=\$G\$47	Binding	0
\$E\$48	Lithuania Quantity needing Storage	0	\$E\$48<=\$G\$48	Binding	0
\$F\$53	Berlin Total Units available	1,500	\$F\$53>=\$H\$53	Binding	0
\$F\$54	Romania Total Units available	1,000	\$F\$54>=\$H\$54	Binding	0
\$F\$55	Bulgaria Total Units available	500	\$F\$55>=\$H\$55	Binding	0
\$F\$56	Lithuania Total Units available	500	\$F\$56>=\$H\$56	Binding	0
\$H\$7:\$H\$13=Bin	ary			85.9	

Army Supply Chain Management

